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a  b  s  t  r  a  c  t

The  compaction  of powder  beds  into  solid  bodies  occurs  by virtue  of  the  formation  of  inter-particle  bonds.
The  mechanical  strength  of  the  compact  depends  on  the  type  of  bonding  interaction,  as  well  as,  the
inter-particle  contact  area  created  in the compression  process.  A  hybrid  quasi-continuum  computational
approach  has  been  implemented  to study  the  bonding  occurring  in compressed  granular  assemblies.  The
approach resolves  the powder  bed  on the  particle  level,  allowing  for  the  tracking  of  contact  area  generated
by  particle  deformation  and  the  computation  of  history-dependent  inter-particle  bonding  forces.  The
magnitude  of the  bonding  force  is  calculated  using  a synthetically  constructed  potential  aiming  to mimic
the  shape  of  typical  molecular-type  interactions.  The  uniaxial  compaction  and  subsequent  relaxation
of  powder  beds,  representative  of pharmaceutical  excipients  have  been  simulated.  Due  to the bonding

occurring  between  the individual  particles  the compressed  beds  acquire  tensile  strength.  Post-relaxation
tensile  loading  of  the  compacts  is  used  to quantify  the  magnitude  of  this  tensile  strength.  To  validate
the  computational  results,  tablets  are  prepared  using  a compaction  simulator  under  conditions  closely
resembling  the simulated  scenarios,  where  subsequently  the  tablets  are  subjected  to tensile  loads  until
failure. The  predicted  values  for the  tablet  strength  utilizing  the present  methodology  capture  the general
trends  exhibited  by the  experimental  record.
. Introduction

A  typical tableting process can be tentatively divided into sev-
ral stages following the progressively increasing axial compressive
oad on the powder bed. In the rearrangement stage, the powder
ed is densified by virtue of the translational and rotational motion
f individual particles filling in the void structures created during
ie-filling due to cohesive forces and geometric interference. Once
he bed is compacted to the point where no significant non-affine

otion of individual particles is occurring, further loading results in
he elastic and, upon yielding, subsequent plastic deformation (and
f applicable fragmentation) of the particles. It is during this stage
hat the powder bed is transformed into a solid body through the
onding of the individual particles to each other. Despite the impor-
ance of mechanical strength for tablet stability, integrity during
ransportation and storage, as well as disintegration properties, the
henomena controlling bond formation during compaction are still
oorly understood and process design is based mostly on trial and

rror.

Depending on the nature of the compacted materials particle
onding can occur through a variety of mechanisms. Typically,
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these mechanisms are distinguished based on the nature of the
bonding force. Electrostatic bonding can occur due the accumu-
lation of triboelectric charge in the powder bed or because of the
presence of polar functional groups on the particles surface. Molec-
ular force bonding, while technically also driven by electrostatic
interactions is recognized as a separate mechanism due to the large
difference in separation scales, at which the two phenomena mani-
fest. Caused by van der Waals type interactions between charged or
polarized molecules, molecular force bonding requires the powder
particles to be in extremely close contact. In the presence of humid-
ity, liquid menisci can form between particles leading to attractive
forces proportional to the surface tension of the liquid. Finally, dur-
ing prolonged contact between particles, solid bridges can form due
to material melting, self-diffusion of atoms and recrystallization.

For most typical pharmaceutical excipients, bonding is believed
to only occur by virtue of molecular forces and the formation of solid
bridges. Several experimental techniques have been developed to
asses the contribution of the two  potential mechanisms towards
the development of mechanical strength in pharmaceutical com-
pacts. In the case of electrically-conductive materials, resistivity
measurements can be used to detect the formation of solid bridges

(Bhatia and Lordi, 1979). The ratio between tablet strength and
the surface area available in the initial powder bed can be used
to discriminate between solids held together by liquid bridges and
molecular forces (with the latter being orders of magnitude weaker
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http://www.sciencedirect.com/science/journal/03785173
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nd hence yielding much lower surface-specific strengths). The
se of lubricant films can also help differentiate between the two
otential mechanisms. While a film of magnesium stearate will
ignificantly decrease the molecular attractive forces between two
articles (Boer et al., 1978; Vromans and Lerk, 1988), the high local
tresses associated with the formation of solid bridges will facil-
tate the penetration of the lubricant layer and will diminish its
ffect on the strength of the bond (Zuurman et al., 1999). Since van
er Waals forces are inversely proportional to the dielectric con-
tant of the medium, compaction of tablets in different fluids and
he comparison of their mechanical strength with ones compacted
n air can also help identify the contribution of molecular forces to
he bonding of the powder bed (Olsson et al., 1996; sa Adolfsson
t al., 1997). While the above methods have contributed a great
eal to the understanding of the phenomena underlying the forma-
ion of solids during powder compaction, they offer no quantitative
redictive capabilities as far as the post-compaction mechanical
roperties of the granular bed. A proper estimate of the mechanical
trength of a compacted solid is contingent upon the knowledge of
he amount of inter-particle contact area created during the plastic
eformation stage of the compression. A coupling between a mod-
ling tool capable of capturing the local deformations occurring
uring the densification of the bed and a bonding force formulation
onsistent with the physical inter-particle interactions is, therefore,
ecessary to adequately apply quality by design to the process of
owder compaction.

Early efforts in the modeling of powder compaction consisted
f models correlating relative density and applied pressure via
rst order “rate-like” expressions (Heckel, 1961; Kawakita and
udde, 1970). Subsequent empirical models were predicated on the
ssumption that the behavior of the powder bed can be approx-
mated by a continuum with an appropriate constitutive model
Cocks and Sinka, 2007). The methods consist of solving the con-
ervation equations for mass, energy and momentum, coupled with
onstitutive laws, such as those describing stress–strain relations
nd die wall friction. Powders are treated as elastic-plastic materi-
ls with their yield behavior modeled using yield surfaces. Early
ersions assumed a Green/Shima type yield surface (Shima and
yane, 1976; Kuhn and Downey, 1973), a quadratic function of the
on Mises effective stress. These models described the state of the
ompact in terms of its porosity with equivalent values for the yield
tress in tension as well as compression. The last several decades
ave been marked by the transition towards models originating

rom soil mechanics simulation such as Cam-Clay (Schofield and
roth, 1968; Borja and Lee, 1990), DiMaggio–Sandler (DiMaggio

nd Sandler, 1971) and Drucker–Prager (Drucker and Prager, 1952).
xperimentally calibrated (Pavier and Doremus, 1999), these mod-
ls are fairly accurate in the prediction of the densification of the
owder beds (also based on the evolution of a single variable, such
s the relative density), however, they do not explicitly resolve
nter-particle bonding. Continuum models for granular materials
hat account for tensile strength, e.g. (Dvorkin et al., 1989), require
d hoc calibration of the parameters describing that regime.

Of the above, the Drucker–Prager Cap model has gained the
ighest popularity as far as the modeling of pharmaceutical tablet
ompaction is considered (Aydin et al., 1996; Michrafy et al., 2002;
ec et al., 2003; Sinka et al., 2003; Kadiri et al., 2005; Wu et al., 2005;
inha et al., 2010). Recently the FEM method has been extended
Khoei et al., 2006), enabling it to handle cracks and discontinu-
ties. Despite their success in reproducing the densification of a
ompressed powder, yield surface Finite Element Methods have
he disadvantage of requiring experimental data for the calibration

f their parameters.

Micro-mechanical models, such as the one developed by (Fleck
t al., 1992) aim to simulate the macroscopic compaction behav-
or based on the resolution of the motion of individual particles in
harmaceutics 418 (2011) 273– 285

a random close packing with visco-plastic dissipation occurring at
the points of contact. The model only considers the affine motion of
particles as caused by the macroscopic strain. In the original imple-
mentation the model assumed assume fully sticking contacts, with
the material having as much strength in hydrostatic tension as in
hydrostatic compression. Subsequent iterations included different
contact strengths in tension and compression (Fleck, 1995) as well
as the addition of different contact laws (Fleck et al., 1997)derived
from the mutual indentation of dissimilar particles (Storakers et al.,
1999). These methods are usually limited to stage I compression
(characterized by interconnected pores between the particles, with
plastic flow at the zones of inter-particle contact and no interaction
between such zones). Stage II compaction, where the pores close are
usually approached using models developed for the study of duc-
tile fracture and metallurgical powder compaction such as Gurson
(1977).

Following the above work, among others, (Redanz and Fleck,
2001) formulated a DEM model aiming to explore the non-affine
motion of particles, such as sliding and rolling. In general, DEM
models have recently enjoyed significant success in reproduc-
ing the behavior of powder beds during shearing (Thornton and
Antony, 2000; Oda and Iwashita, 2000) and compaction (Heyliger
and McMeeking, 2001; Martin and Bouvard, 2003; Pizette et al.,
2010). Recent contributions by Procopio and Zavaliangos (2005);
Jerier et al. (2011) present DEM formulations combined with the
full FEM discretization of the individual particles.

Prediction of the strength of powder compacts requires the res-
olution of the bonding forces between the individual particles. Early
contributions in the study of adhesive contacts between elastic par-
ticles came courtesy of Johnson et al. (1971), usually referred to as
the JKR model and (Derjaguin et al., 1975) DMT  model. Both model
assumed spherical particles. The JKR model predicts a deforma-
tion of the sphere, caused by the adhesive forces, results in the
formation of a neck at the point of contact, where all interfacial
forces are confined. Conversely, the DMT  model disregards defor-
mation caused by adhesion and only considers that resulting from
the Hertzian force distribution, with adhesive forces acting outside
the contact zone. The disagreement between the two models was
resolved by Tabor (1977) who showed that each applies to a spe-
cific limiting case (large, soft particles for JKR and small rigid ones
for DMT). Tabor also introduced a dimensionless parameter to use
to gauge the applicability of each model for particular cases. Muller
et al. (1980) provided the first solution for the adhesion of elas-
tic spheres for an intermediate case, coupling the Lennard–Jones
potential for the description of the surface force and the Boussi-
nesq elastic solution for a concentrated force for the resolution of
the interfacial deformation. Efforts to solve the problem of elas-
tic adhesive contact analytically have resulted in the MD model
(Maugis, 1992), which covers the entire range of contact properties.
Both the JKR and DMT  models have been subsequently extended to
consider plastic deformation as well (Maugis and Pollock, 1984 and
Chang et al., 1987, respectively). Following numerical implemen-
tations of higher accuracy included the works of Kogut and Etsion
(2003); Song and Srolovitz (2006); Gilabert et al. (2007); Kadin et al.
(2008) among others.

The aim of this article is to apply a quasi-continuum formulation
for the simulation inter-particle bonding in granular systems. First
proposed for the study of the interactions between cracks, grain
boundaries and dislocations in metallic crystals, quasi-continuum
methods have also been used to simulate the formation and annihi-
lation of Lomer–Cottrell junctions in fcc single crystals (Rodney and
Phillips, 1999), and more recently to analyze dislocation nucleation

and metallic phase transformation during indentation (Shenoy
et al., 2000; Smith et al., 2000). For the purposes of this work, the
quasi-continuum approach has been implemented in a way  suit-
able for the description of granular systems composed of a large
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umber of particles of different sizes and materials. Results for
owder compaction of mixtures of different materials have pre-
iously been published by Zheng and Cuitino (2002) The approach
elies on the assumption that the particle displacements are small
nough that they can be described by means of a constrained
eld—provided by a typical FEM mesh. The formulation, described

n detail in Section 2, is derived specifically for quasi-static pro-
esses, however the extension to include dynamic conditions is
traightforward. The model is based on the principle of virtual
isplacements and, for reversible systems, it can be recast as a varia-
ional problem. An interpolation scheme is proposed in Section 3 for
esolving the non-local interactions between particles contained
n different mesh cells in a local manner. This procedure renders s
mmetric local stiffness matrices, which is consistent with systems
here a potential energy can be defined.

The reason the quasi-continuum method is particularly well
uited for the study of powder compaction is that, on one hand,
eing an FEM method, it is capable of providing “fast” simula-
ions of the behavior of the entire bed, as described by the density
istribution, for example. On the other hand, since individual
article information is stored and updated at all times, it is capa-
le of computing yield behavior explicitly by resolving individual
article–particle interactions. The formulation is implemented for
D cases involving cohesive particles of different sizes. The resolu-
ion of the inter-particle bonding eschews the detailed adhesive
ontact models described above in favor of a simple geometric
stimation of the interfacial area. This is done for the purposes
f reduction of computational time and resources. An example
howing the compaction, relaxation and subsequent tensile loading
f Avicel PH102 is presented in Section 4. The initial configura-
ion is generated by a ballistic deposition technique (Jullien and

eakin, 1989; Westwood, 1989). The evolution of the macroscopic
oad–displacement profiles as well as the spatial density and stress
istribution are recorded. The tensile strength of the simulated
ompacted solids is compared to experimental results to obtain

 reasonably close fit.

. General formulation

Consider a finite set of P spherical particles, P, which is subjected
o a discrete applied force field given by

m ∀m ∈ P (1)

lso consider that an interaction potential exists for each element
particle) pair in the set P,

mn(rmn) ∀(m, n) ∈ P, (2)

here rmn denotes the current distance between the centers of par-
icles m and n. This distance rmn can be easily computed in terms
f the current positions xm and xn of the particles m and n, respec-
ively, then

mn =
(

rmn · rmn
)1/2

(3)

here rmn is the current vector position of particle m respect to n,
efined as

mn = xm − xn. (4)

he current position can be expressed by,
m = Xm + um, (5)

here Xm and um are the reference location and the discrete dis-
lacement field of each particle m ∈ P, respectively.
harmaceutics 418 (2011) 273– 285 275

Using the previous equations, the current distance between par-
ticles can be expressed as

rmn =
[

(Rmn)2 + 2Rmn · umn + umn · umn
]1/2

(6)

where,

Rmn =
(

Rmn · Rmn
)1/2

Initial distance between particles m and n

(7)

Rmn = Xm − Xn Reference position of particle m respect to n (8)

umn = um − un Relative displacement of particle m respect to n

(9)

2.1. Principle of virtual work

The equilibrium condition of the set of P particles, P,  can be
enforced weakly by means of the principle of virtual work,

1
2

∑
∀m ∈ P

∑
∀n ∈ Vm

ıwmn +
∑

∀m ∈ P
fm · ıum = 0 (10)

where ıwmn is the variation of the interaction potential of the pair
(m, n) due to a variation of the discrete displacement field um and Vm

is the set of the neighbors of the particle m, which can be expressed
as

P ⊇ Vm = {n|n ∈ P and rmn ≤ lmax} (11)

Here lmax is a cut-off distance. The variation of the potential is given
by

ıwmn = dwmn

drmn
ırmn = dwmn

drmn

∂rmn

∂umn
· ıumn, (12)

and noticing that

∂rmn

∂umn
= 1

rmn

(
Rmn + umn

)
= rmn

rmn
= emn (13)

Eq. (10) can be recast as

1
2

∑
∀m ∈P

∑
∀n ∈ P/n  /= m

dwmn

drmn
emn · ıumn + fm · ıum = 0. (14)

where emn is the unit vector in defining the direction from particle
n to particle m. Furthermore, since

dwmn

drmn
= dwnm

drnm
, (15)

emn = −enm and (16)

umn = −unm; (17)

Eq. (14) yields

∑
∀m ∈ P

[ ∑
∀n ∈ Vm

dwmn

drmn
emn + fm

]
· ıum = 0. (18)

Since ıum is an arbitrary variation of the displacement field, the
following condition has to be satisfied for every m ∈ P[ ∑ dwmn

mn m

]

∀n ∈ Pm

drmn
e + f = 0, (19)

which is the equilibrium equation corresponding to particle m in
order to satisfy Eq. (18). Since emn is the direction vector of the force,
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t follows from Eq. (19) that the resultant force on particle m equals
ero. Here dwmn/drmn represents the magnitude of the interaction
orce between particles m and n.

.2. Discretization

Consider a discretization of the domain  ̋ containing all the par-
icles in the system into element domains ˝e with e = 1, . . .,  M such
hat  ̋ = ∩ e˝e and with nodal points a (a = 1, . . .,  nodes).

An approximate solution to the weak equilibrium condition
xpressed in Eq. (18) can be attained by imposing a constrained
isplacement field, constructed as

m =
∑
∀a

Nm
a Ua and (20)

mn =
∑
∀a

(
Nm

a − Nn
a

)
Ua =

∑
∀a

Bmn
a Ua (21)

here Ua is the displacement vector of the node a and Nm
a is the

nterpolation function which relates the displacement vector of
article m with the displacement vector of node a. Substituting Eq.
21) into Eq. (18) results in

∀a

{ ∑
∀m ∈ P

[ ∑
∀n ∈ Vm

1
2

dwmn

drmn
emnBmn

a + fmNm
a

]}
ıUa = 0, (22)

hich yields the following system of d × nodes nonlinear equations

∑
m ∈ P

[ ∑
∀n ∈ Vm

1
2

dwmn

drmn
emnBmn

a + fmNm
a

]
= 0 ∀a = 1, . . . , nodes

(23)

ue to the arbitrary manner in which the ıUa can be selected (here
 is the dimension of the space). Furthermore, considering the par-
ition of the domain ˝,  we can rewrite the previous equation as

∀e

{ ∑
∀m ∈ Pe

[ ∑
∀n ∈ Vm

1
2

dwmn

drmn
emnBmn

a + fmNm
a

]}
= 0

∀a = 1, . . . , nodes

(24)

here,

 ⊃ Pe =
{

m

m ∈ P and m is contained in the domain ˝e

}
(25)

The above equality is a statement of the discrete equilibrium at
he nodal points. Since the enforcement of this equality requires an
terative procedure, Eq. (24) is rewritten in indicial notation for the
ubsequent derivation of the tangent operator.

ia(U) =
∑
∀e

{ ∑
∀m ∈ Pe

[ ∑
∀n ∈ Vm

1
2

dwmn

drmn
emn

i Bmn
a + f m

i Nm
a

]}
= 0.

∀a = 1, . . . , nodes and ∀i = 1, d (26)

ere Gia represents the d × nodes equations which depend on the
urrent position of the particles and thus on the discrete displace-
ent field U. In term of these nodal displacements, the Cartesian
omponents of the current relative position vector rmn can be then
xpressed by

mn
i = Rmn

i +
(

Nm
b − Nn

b

)
Uib = Rmn

i + Bmn
b Uib. (27)
harmaceutics 418 (2011) 273– 285

2.3. Tangent modulus

Next, we turn our attention to the derivation of the tangent mod-
ulus. Proper computation of this modulus is of importance in many
cases. Examples include the preservation of convergence proper-
ties of nonlinear systems, such as the one described by Eq. (27)
when direct methods such as Newton’s are used; preconditioning
in implementations where indirect methods are used; and assess-
ment of the loss of ellipticity of the system. It can also be used
to find approximate solutions of the time (or load) evolution of
the constrained displacement field when explicit time-integration
schemes such as forward gradients are considered.

By definition the tangent modulus is given by

Kiajb = ∂Gia

∂Ujb
(28)

Lengthly but straightforward derivation yields the following
expression for the tangent operator

Kiajb =
∑
∀e

Ke
iajb =

∑
∀e

[ ∑
∀m ∈ Pe

∑
∀n ∈ Vm

Bmn
a Bmn

b Amn
ij

]
(29)

where Ke
iajb

is the elemental stiffness matrix and

Amn
ij = 1

2(rmn)2

[
d2wmn

(drmn)2
rmn
i rmn

j + 1
rmn

dwmn

drmn
〈ıijr

mn
s rmn

s − rmn
i rmn

j 〉
]

(30)

3. Local and nonlocal formulations

It is noteworthy that the above formulation is non-local since
the neighbors of a given particle m contained in a given element
e may  be outside of the domain ˝e. In systems, where long-
range interactions dominate, the interaction distance may  span
several elements, necessitating the use of a non-local implemen-
tation. In systems dominated by short-range interaction (such as
those governed by mechanical contact), on the other hand, a local
formulation can provide a satisfactory approximation. To differ-
entiate between local and non-local formulations, the following
nomenclature is introduced for the shape functions N. mNm

a is the
interpolation function for particle m and node a computed for the
element e which contains m, while nNm

a is the extrapolation func-
tion for particle m and node a computed for the element e which
contains n. Notice that in general nNm

a /= mNn
a .

The B matrix can then be written as

Bmn
b =

{ mNm
b − nNn

b for the non-local formaultion and

mNm
b − mNn

b for the local formaultion
(31)

The local formulation allows the evaluation of the contribution
from each element independently, and is therefore amenable to
implementation in conventional or local finite element codes. It
can also be shown by direct substitution of Eq. (31) into Eq. (30)
that the local formulation renders symmetric elemental stiffness
matrices in the sense that

Ke
iajb = Ke

jbia. (32)

The proposed computation of the interpolation functions for
local formulations implies that the relative displacement between
two particles belonging to different elements is computed once

for each element, which in general yields a different result. The
displacement of the particle lying outside of the element under con-
sideration is extrapolated using the interpolation function of that
particular element. The difference between computing the relative
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isplacements of particles residing in contiguous elements using a
on-local approach (providing a unique relative displacement con-
istent with the deriving principle of virtual displacement) and a
ocal approach can be estimated for linear interpolation functions
y

mn
nonlocal = umn

local + C(�m + �n) (33)

here �m and �n are the distance from particles m and n to the
hared element boundary respectively and C is a constant for the
iven set of elements. Thus, as long as the interacting particles in
ifferent elements remain close to the boundary, �m + �n → 0, both
ethods yield similar relative displacements, umn

nonlocal → umn
local.

ince we are concerned with the compaction of particle systems,
he local approach is implemented in this article.

. Numerical simulations

.1. Generation of the granular bed

The first step towards the simulation of the compaction of
owder beds is the generation of the initial bed packing. Depend-

ng on the needs of the specific numerical experiment, these can
e analytically produced regular arrangements or random struc-
ures obtained from a variety of sources, both numerical (such
s DEM) and experimental (X-ray tomography). The simulation
f the compaction of realistic granular beds requires the genera-
ion of a random initial packing, which resembles those found in
ature. While any procedure, resulting in such an initial config-
ration could be applied successfully, for this work, an approach
haracterized by very short bed generation times was  chosen. Gran-
lar beds can be effectively characterized through the qualification
f their void space distribution. Void spaces belong to either of
wo general categories – intrinsic (due to the spherical or irregular
hape of particles) and removable (caused by particle cohesion and
haracterized by meta-stable structures, which can be eliminated
y particle rearrangement). In order to generate such packings, a
allistic deposition technique (Jullien and Meakin, 1988) has been

mplemented, in which particles, released sequentially from the
op of the computational domain, are allowed to settle based on a
et of simple rules. A particle is allowed to roll down other parti-
les that it encounters until it is locked into a stable configuration.
he basis of this approach is the stabilizing effect of center-to-
enter cohesive forces. In this context, cohesion is assumed to be
trong enough to stabilize a particle both during deposition and
fterwards, but remains otherwise undetermined. The mean den-
ities obtained from this technique is generally lower than those
btained from models in which a cooperative reorganization of
he particles is allowed to occur. In addition, powder beds gen-
rated using ballistic deposition exhibit vertical directionality not
lways present in materials with low cohesivity. However, for the
urposes of the current study the method has been deemed ade-
uate in generating beds resembling, in structure, those observed

n reality – cohesive aggregates exhibiting large open structures
ue to the limited capacity for particle accommodation (Gioia et al.,
002; Redanz and Fleck, 2001). While the present study is focused
n the bonding process during compaction, the quasi-continuum
ethodology allows to incorporate ordered/disordered packing

tates as generated for example by fully resolved DEM simulations
f the pouring process. Such studies would further contribute to
he understanding of the impact of filling on the properties of the
ompacts.
Fig. 1(a) shows a granular bed, numerically generated by pour-
ng powder consisting of a single type of particles vertically into a
rictionless container with a circular cross-section with a radius of

 mm and a height of 5 mm.  The shape of the particles is assumed
harmaceutics 418 (2011) 273– 285 277

to be spherical while their size (diameter) follows the distribu-
tion shown in Fig. 1(b). The density of the particle material is
�s = 1.6 g/cm3 and 34 mg  of granules are poured into the container
to form the bed. The initial relative density of the bed is 0.48. The
particle size distribution, as well as all other particle properties
in this work have been chosen to match those of Avicel PH102—a
popular pharmaceutical excipient. The asymmetricity in the dis-
tribution (observed in real systems (Zhang and Chakrabarti, 2003)
for example) has been obtained by overlapping two mono-modal
distributions—one with a peak at 100 � s and one with a peak at
50 �s. During the process of ballistic deposition, each particle, upon
generation, is assigned a random radius with a probability following
the above distribution.

To remove open structures, powder beds are usually stirred or
shaken. One way to replicate this process numerically is by using
discrete methods, solving the dynamic equations for each particle.
However, as it was discussed in the introduction, such methods
are too computationally expensive to be applied for large powder
beds. Instead, a different method has been implemented, simulat-
ing the particle rearrangement due to the quasi-static motion of a
top punch (Gioia et al., 2002). After each punch displacement step,
particles are allowed to relax into a new non-deformed configu-
ration. Fig. 2(a) shows the bed after a slight rearrangement. The
relative bulk density at this point is 0.545. Further motion of the
punch produces the bed seen in Fig. 2(b), with a relative bulk den-
sity of 0.576 and eventually the bed shown in Fig. 2(c) of a relative
bulk density of 0.611. A better visualization of the shape of the
initial void structures and their closing by particle rearrangement
(along with an explanation of the closing mechanism) can be found
in Gioia et al. (2002).

5. Local constitutive laws

A very attractive feature of the granular quasi-continuum
approach is that specialized inter-particle laws can be readily incor-
porated into the formulation to account for effects such as plasticity,
fracture and strain-rate dependency. Local or inter-particle laws
should be provided to replicate the collective mechanical behav-
ior of the system. The form of the law itself is a very complicated
issue and its derivation is still an active research area in the lit-
erature. Large particle deformation, breakage and the potential
penetration of one particle into another are all sources of additional
difficulty. The laws can be extracted directly from experimental
testing for some simple scenarios. This approach, however, is not
feasible for systems composed of multiple materials with multiple
particle sizes. Instead, theoretical models have been used, which
despite offering but an approximation of the actual physical situ-
ation, can be easily applied for the study of complex systems. For
the purposes of simplification, the local inter-particle interactions
between two  spherical particles are modeled separately in the five
different regimes: (i) elastic contact, (ii) elastic–plastic contact, (iii)
fully plastic, (iv) finite deformation and (v) tensile loading. While
continuity of the interaction forces is required at transition points
from one regime to the next, the continuity of their derivatives
(stiffnesses) is not. This finite jump in the stiffness bears no conse-
quences on either the energetics of the system or on the robustness
of the numerical scheme.

Consider a binary interaction between particle m and n with
radii rm and rn, Young’s moduli Em and En, Poisson’s ratios �m and
�n, and yielding stresses �ym and �yn, respectively. If the central
distance between them is denoted by rmn, the penetration distance

is therefore expressed as �mn = rm + rn − rmn as shown in Fig. 3. Here
�mn can be positive or negative. The negative value implies the
separation of one particle from the other when tension needs to be
considered.
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Fig. 1. (a) The initial granular bed after the powder is poured into a frictionless con

Hertz: Elastic contact between particles is described by the
ertz law. If �mn < �e, the elastic contact force is

Fmn

�R2
= 4E

3�

(
�mn

R

) 3
2

, (34)

here R and E are the equivalent radius and the equivalent modulus
f the contact, defined as

1
R

= 1
rm

+ 1
rn

,
1
E

= 1 − �2
m

Em
+ 1 − �2

n

En
. (35)

e is the cutoff that separates elastic contact from plastic.
Similarity solution: The elastic regime only applies at the very
arly stage of compaction when particle deformation is small. Plas-
ic deformation quickly eclipses the elastic one and dominates the
ompaction. If the elastoplastic response of the solid particle can
e described as a linear elastic followed by a power-law plastic

ig. 2. Configuration of granular bed with (a) slight; (b) moderate and (c) extensive partic
c)  respectively.
r with a circular cross-section with a radius of 3 mm;  (b) particle size distribution.

response, characterized by a hardening exponent ˛, the total strain
responds to the applied stress

	i =
{

�/Ei � ≤ �yi

(�/�i)
˛i � > �yi

, (36)

where the index i = m, n refers to the particles coming in contact
and �yi are the reference yielding stresses. The continuity of the
response at � = �yi provides the relation

�i = �yi
˛i

√
Ei

�yi
(37)

to compute the reference yielding stress from the engineering

counterpart. There is no general solution to compute the interaction
between two  dissimilar particles when the contact is in the elasto-
plastic regime. An approximate solution, “similarity solution”, is
available if the hardening coefficients of both particles coming into

le rearrangement. The relative bulk density is 0.545, 0.576 and 0.611 in (a), (b) and
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Fig. 3. Schematic diagram of inter-particle contant and nomenclature.

ontact are close. Let ˛m ≈ ˛n = ˛, the estimated interaction pro-
ided by Storakers et al. (1999) is expressed as

Fmn

�R2

= B(˛)

[
2c2(˛)

](1+1/2˛)
k(˛) ·

(
�mn

R

)1+(1/2˛)

, (38)

here the equivalent reference stress � is defined

1
� ˛

= 1
�˛

1
+ 1

�˛
2

, (39)

n a similar way as the equivalent radius and the equivalent Young’s
odulus of the contact. The coefficients c(˛), k(˛) and B(˛) in Eq.

38) are the functions (only of the hardening parameter), which are
ebuilt to follow

c2(˛) = 1.5 − 1√
˛

, k(˛) = 3.07 ×
√̨

0.16,

B(˛) =
{

0.74 + 0.26/  ̨  ̨ < 3,

0.64 + 0.57/  ̨  ̨ ≥ 3.

rom the curves supplied in Storakers et al. (1999).  To test the appli-
ability of the similarity solution to particle systems, two limit cases

 that of elastic and ideal plastic, corresponding to  ̨ = 1 and ∞,
espectively, are recovered. Substituting  ̨ = 1 and noting that �i = Ei

n this case, the similarity solution (38) approximately recovers the
ertzian law, of which there exists ample experimental validation

or the elastic regime. In the case of  ̨ = ∞,  a linear dependency
s predicted by (38) which is in good agreement with the recent

ig. 4. Compression of regular cubic arrangements of spherical particles of uniform size. (a
onfiguration – compressed.
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experiments of Naito et al. (1998) for nearly ideal plastic materials.
Therefore, we have enough reasons to believe the similarity solu-
tion can adequately address the plastic contact problem when the
material is described by a power-law (36).

The ability of the quasi-continuum formulation to replicate the
theoretical results based on the contact of two equi-sized spheres
has been verified using the regular cubic packings shown in Fig. 4(a)
and (b). For the purposes of these simulations, a mesh composed
of 12-node prism elements was utilized. Its parallel surfaces are
triangular and interpolated quadratically using 6 nodes (3 corner
and 3 mid-side nodes). Once the mesh is generated, particles are
assigned to their corresponding elements. A particle belongs to
a given element if its centroid is contained within the elemental
volume. If the centroid lies exactly on the boundary between two
adjacent elements, the particle can be assigned to either element.
The mesh shown in the figures has been chosen to maintain the
same number of contacts per unit length as in the theoretical com-
putations of bi-particle contact. The well-developed framework of
finite elements can be readily applied for different boundary con-
ditions, such as rigid punch, flexible punch or anything in between.
For the purposes of our simulations, conditions representing a rigid
punch and a frictionless container wall were selected, due to the
particles being much softer than the die. Friction between the gran-
ular particles and between particles and the container wall plays
an important role in the compaction of powder beds, however it
was neglected at this stage of the development of the model this
work. Fig. 5(a) shows the macroscopic normal stress on the bed
as a function of the strain for a large value of the hardening expo-
nent (  ̨ = 10), corresponding to plastic behavior. The elastic case is
similarly recovered for  ̨ = 1, as shown in Fig. 5(b). It can be seen
that the results yielded by the quasicontinuum model are in perfect
agreement with those suggested by the analytical solutions.

The fundamental assumption of the similarity solution is that
the contact must be local, i.e. no interference from other contacts
with the same particle. This may  present an obstacle for its appli-
cation for systems such as the one considered here, because each
of the particles in the granular bed may  be surrounded by many
other particles. In other words, there may  be many contacts occur-
ring simultaneously with the same particle. Fortunately, Storakers
et al. (1999) has demonstrated that the similarity solution validates
up to 40% of deformation without need to worry about multi-
contact interaction, which effectively covers the deformation from
the elastoplastic to the fully plastic regime. It should be noted that

the overall accuracy of single-contact models has been shown to
diminish for compaction to over 80% of the theoretical density (par-
ticle density). Any results shown here exceeding that limit have
been presented for reasons of completeness.

) 3 × 3 × 3 arrangement and mesh, (b) 6 × 6 × 6 arrangement and mesh, (c) 3 × 3 × 3
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Fig. 5. Comparison of bed compression simulation result

The lower limit of the similarity solution is at �e where it crosses
ith Hertz law. The continuity of the contact force at this point gives

ise to

e =
[

3��

4E
B(˛)k(˛)

](2˛)/(˛−1)[
2c2(˛)

](˛+1)/(˛−1)
(40)

here  ̨ /= 1, otherwise the Hertz law is always applicable. The
pper limit of the similarity solution is the point, beyond which
he contact is in the large deformation regime, where inter-particle
nteraction is no longer only a contact problem. At this point, the
ffects of a solidified material must be considered. Fig. 6 shows the
lasto-plastic behavior of a random-packed bed. Different curves
orrespond to different ratios of the yielding stress �yi and the
oung’s modulus, E. The bed response ranges from almost purely
lastic (at high values of the yielding stress) to almost entirely plas-
ic (for cases where yield occurs at very low loadings), and spans
he full range of intermediate behavior in between. All compression
imulations shown have been carried out for a hardening exponent
alue of 10.

Particle–particle bonding: In order to endow the compacted
olid with a tensile strength, bonding between individual particles
s considered to occur in cases of finite contact areas. We  introduce

 phenomenological expression that correlates the evolving bond-
ng strength smn

0 between two contacting particles m and n to the
urrent maximum of distribution of normal compressive stresses

t the contact zone, which is denoted by pmn

0 . More precisely, we
onsider that

mn
0 = cbpmn

0 , (41)

ig. 6. Stress–strain curves, corresponding to the loading of a random-packed bed
or  different values of the particle yielding stress.
 theory: (a) plastic deformation, (b) elastic deformation.

where the constant cb is obtained from calibration using exper-
imental results. Note that since pmn

0 depends on the degree of
inter-particle compression, which is generally different for each
individual contact pair, smn

0 is also dependent upon the local con-
solidation conditions, and thus, the overall compact strength is
obtained as the addition of the individual contributions of each
particle–particle bonding along the failure (weakest) path. Maps
of particle–particle bonding are shown in Fig. 7, which shows that
not only the bonding is heterogenous (changing from point to point)
but also anisotropic (direction dependent). Anisotropic properties of
pharmaceutical solids have previously been reported by Heng et al.
(2006). The bonding directionality, as schematically shown in Fig. 8,
leads to a solid with local strength texture, therefore, the overall
tensile strength is dependent on the tensile loading direction.

Tensile regime: The tensile strength developed during the con-
solidation process due to particle–particle bonding is exercised
when a reversal of the load is imposed. The tensile regime is gen-
erally characterized by

�̃mn = �mn −
(

�mn
max − �mn

elastic

)
< 0, (42)

where

�mn
elastic = R

(
3
4

Fmn
max

ER2

) 3
2

is the overlap reduction during the elastic unload, and �mn
max and

Fmn
max are the maximum overlapping and maximum compressive

force attained during consolidation, respectively. Note that if the
yield stress is not exceeded during compression (elastic regime),
then �mn

elastic = �mn
max, and thus, �̃mn = �mn.

In the tensile regime, the inter-particle tensile force between
particles m and n is determined by following expression

Fmn
b = �R2smn

0 e(�̃mn/R), (43)

which provides a gradual reduction of the available tensile force
with the effective inter-particle separation, given by (42), once the
inter-particle tensile strength, defined by (41), is exceeded.

5.1. Uniaxial compaction simulations

After the initial configuration of the granular bed is obtained,
either by numerical simulations – the present case – or by extract-
ing data directly from experiments, a mesh needs to be designed.
For the purposes of the simulations described in this work, a mesh

composed of 12-node prism elements was utilized. Its parallel sur-
faces are triangular and interpolated quadratically using 6 nodes (3
corner and 3 mid-side nodes). A sample mesh super-imposed over
a powder bed is shown in Fig. 9.
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Fig. 7. Map  of particle bonding forces (a) uncompacted bed; (b)intermediate compaction; (c) maximum compaction. Colors red (high) to blue (low) represent the average
intensity of the bond at a given particle, which is computed by scalar addition of all bonding forces from neighboring particles and divided by the non-zero contacts. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of the article.)
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paction device, in which a moving stage equipped with standard
B-tooling is propelled along a linear track, equipped with pre-
compression and compression rolls, as well as an ejection cam and

Table 1
Fig. 8. Directionality of bonding force between generic particles m and n. 

Once the mesh is generated, particles are assigned to their cor-
esponding elements. A particle belongs to a given element if its
entroid is contained within the elemental volume. If the centroid
ies exactly on the boundary between two adjacent elements, the
article can be assigned to either element. The well-developed
ramework of finite elements can be readily applied for differ-
nt boundary conditions, such as rigid punch, flexible punch or
nything in between. For the purposes of our simulations, condi-
ions representing a rigid punch and a frictionless container wall
ere selected, due to the particles being much softer than the
ie. The model is predicated on the assumption that the con-
tituent particles undergo only affine deformation as prescribed
y the macroscopic strain and experience no local rearrangement

n the compaction stage (the particle rearrangement stage does
nclude inter-particle friction). This is a typical assumption for

icromechanical models such as Storakers et al. (1999).  While
his assumption is partially justified when applied to a post-
earrangement bed, in which the large void structures have been
emoved, there exists evidence that inter-particle friction can have

 noticeable impact on compaction even at high relative densi-

ies. An analysis of this impact can be found in Redanz and Fleck
2001). Implementation of wall friction would be straight-forward
n this formulation, however, it has not been included for the gener-
tion of the results presented herein. In an attempt to replicate this
presents the bonding force between these two particles in the direction i.

condition, the physical die-wall has been lubricated using a sus-
pension of MgSt.

The compaction of a powder bed consisting of particles with
properties selected to match those of Avicel PH102 has been sim-
ulated. The mean size, density, Young’s modulus, yield stress and
Poisson’s ratio of the modeled particles are outlined in Table 1. Val-
ues for these parameters were obtained from Roberts et al. (1994)
for the Poisson ratio and Kachrimanis and Malamataris (2004) for
the Young’s modulus (obtained from zero-porosity compacts). For
validation purposes, the values of the pressure exerted on the bed
at different upper punch positions are compared to experimental
data. Experimental compaction of Avicel PH102 have been car-
ried out on the Presster a compaction emulator manufactured by
MCC  (Metropolitan Computing Corporation). The Presster is a com-
Granular Material Properties.

Name d (�m) �s (g/cm3) E (MPa) �y (MPa) �

Simulated material 100 1.6 4300 0.0475 0.3
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Fig. 9. Mesh super-imposed over a sample powder bed.

 take-off bar, allowing to emulate the operation of a wide range
f commercially available rotary tablet presses. The compression
tage is instrumented to measure pre-compression, compression,
jection, take-off and die-wall forces, punch displacement and
ress speed. Feeding of powder in the die is achieved by virtue
f a vibratory gravity force feed shoe mechanism. In order to repli-
ate the frictionless conditions considered in the simulations, prior
o compression, the punch and die surfaces were sparingly lubri-
ated with magnesium stearate suspended in ethanol (5%, w/v). A
tandard flat face 10 mm round TSM B-tooling has been used. Com-
action was carried out under conditions matching the operation
f a 10-station Mendel rotary press with an achieved dwell time of

9 ms.

The axial compression stress vs. strain curves are compared
gainst experimental data in Fig. 10(a). For the purposes of this
imulation a loosely packed numerical bed was generated with an

ig. 10. Pressure vs. strain, (a) comparison of numerical (red curve) and experimental (blu
y  the numerical simulation (shown by the dashed (- - -) line). (For interpretation of the r
he  article.)
harmaceutics 418 (2011) 273– 285

initial relative density of 0.4. After rearrangement that value was
increased to 0.46) The initial (after filling) relative density in the
Presster die is around 0.3. In order to match the simulated bed,
the powder in the Presster die is subjected to a pre-compression
load. This load, however, results in a certain particle deforma-
tion, in addition to rearrangement. In order, to replicate this
effect, the numerical bed is also loaded and unloaded (shown in
Fig. 10(b). Once the two  powder bed configurations have been
brought to equal initial relative densities they are compressed to
a relative density of around 0.85. The experimental and numeri-
cal compaction results are represented by the blue and red curves,
respectively (Fig. 10(a)). The two curves exhibit good agreement
until the late stages of compaction, above strain values of 0.3 (cor-
responding to a relative density of 0.8). The two  curves exhibit good
agreement until the late stages of compaction, above strain values
of 0.3 (corresponding to a relative density of 0.8). At this point, sig-
nificant interaction among contacts commences to have an effect
which accounts for the rapid stiffening observed during the exper-
iments. Fig. 11 shows the progress of the bed configuration during
the process of compaction, with its un-compacted state, state in
mid-compaction and fully compacted state shown in (a), (b), and
(c), respectively.

5.1.1. Bonding
The compaction of a closely-packed bed proceeds by virtue of

particle deformation. It is this deformation, which accounts for
the increase in contact area between adjacent particles and their
subsequent bonding via various surface forces. This process is repli-
cated in the numerical model by assigning a bonding force acting
between each pair of particles in contact. The force is a function
of the maximum inter-particle pressure pmn

0 , in accordance to Eq.
(43). Fig. 12 shows the compression force versus displacement
curves corresponding to the compaction, relaxation and subse-
quent tensile loading of a powder bed (multiple compaction forces
are represented). The bonding force formulation is calibrated using
experimental tablet tensile loading results. The procedure used for
calibration was the following. A tablet was  produced at a com-
paction pressure in the middle of the studied range using the
Presster. This tablet was  then subjected to a tensile load until failure

and the corresponding force was recorded. A numerical simulation
was performed matching the experimental conditions as closely
as possible. The parameter cb was  then varied until the failure of
the numerically simulated compact occurred at the same tensile

e symbols) results; (b) close-up of the unload–reload portion of the curve generated
eferences to color in this figure legend, the reader is referred to the web version of
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Fig. 11. Configuration of granular bed (a) before compactio
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Fig. 12. Compression, relaxation and tensile loading of powder beds.

oad as the physical tablet. The value of cb, thus obtained, was
sed for all subsequent simulations. The maximum tensile stress
chieved corresponds to tensile strength of the material. A post-
ailure behavior is also observed in our simulations due to: (i) the
mooth inter-particle force decay of potentials provided in Eq. (43)
nd (ii) the imposed displacement boundary conditions applied. It

hould be noted this post-failure regime is unstable under force-
ontrolled conditions, resulting in an immediate failure after the
ensile strength has been reached. Each tensile loading curve in
ig. 12 exhibits a part of steep increase, followed by a decay tail. Of

Fig. 13. Tablet tensile strength as a fu
n; (b) during compaction and (c) in its densest state.

these, only the first part is significant for estimating tablet strength.
The peak tensile stress is treated as a mark of tablet failure. In
the numerical system, individual particles debond gradually dur-
ing the tensile loading, with the axial stress going through a local
maximum before starting to decay. This is the stage where crack
propagation is initiated. The method in its current implementa-
tion is not equipped to simulate discrete fracture behavior and the
post-failure behavior is therefore mesh size dependent (hence the
dismissal of the subsequent portion of the loading curve). In the
graph, compression corresponds to negative forces and displace-
ments, and tension is described by positive values.

For the purposes of validation of the model, tablet compres-
sion has been carried out both physically (in the Presster) and
numerically, while keeping the process parameters and materials
properties as similar as possible. The physical tablets have been
subjected to tensile loads through the use of a device especially
designed for the purpose. The device consists of two linear step-
per motors positioned along the same axis. A metal plate was
attached to each stepper motor. After gluing the flat faces of a tablet
to each metal plate, the stepper motors can be used pull on the
tablet along their common axis, which passes through the center-
line of the tablet. Load cells mounted on the holder plates were
used to measure the resulting force. To account for the compli-
ance of the tensile tester the two metal plates were adhered to
each other with no tablet being present. A tensile stress was then

applied up to the value of the highest fracture force obtained from
the MCC  tablets. The force/displacement curve was  then subtracted
from the measured force/displacement curves obtained from the
tablets. Fig. 13 shows the values of the break force for tablets, e.g.

nction of the compaction force.
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he applied tensile force, at which the tablets break (both physi-
al and simulated) as a function of the force, at which they have
een compressed. There is a reasonably good agreement between
he numerical and experimental results, with a small overshoot
y the numerical values, caused by the tail of the bonding force
istance decay formulations (expressions involving a cut-off dis-
ance caused the simulations to become unstable). It is noteworthy
hat despite predicting slightly higher values for the tablet tensile
trengths, the model manages to reproduce the slope of the curve
o a large degree.

. Conclusions

A quasi-continuum numerical method has been implemented
o study the compaction of granular beds. The technique resolves
he bed on the particle level, using particle–particle interactions
o calculate the deformation of the FEM mesh discretizing the
omain. Simulations of the compaction of Avicel PH102 demon-
trate the ability of the model to replicate the compaction behavior
f physical systems. The ability of the method to incorporate local
nter-particle forces, has been used to simulate the consolidation of

 granular assembly, in which bonding forces form between neigh-
oring particles as a function of contact area. A generic expression
or the strength of the bonds, calibrated using experimental data
as been shown to be able to predict the tensile strength of tablets
omposed of a pharmaceutical excipient to a reasonable degree.
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